Objective

HP is interested in developing a microfluidic sensor with the capability to efficiently and inexpensively characterize and sort particles suspended in solution. The sensor will distinguish between particles based on size and composition and integrate with a mobile interface, such as a smartphone or tablet, to provide access to complex lab services on the go.

The Need

- **Healthcare:** Point of care diagnostics such as HIV/AIDS (CD4+)
 - Ensuring Fuel Quality
 - Determining hydraulic oil particle contamination in machinery

Our Vision

- **Lightweight and portable**
- **Low cost (less than $500)**
- **Automated, no training required**
- **Powered with phone or tablet**
- **Requires small sample (<1 drop)**
- **Integration with HP Cloud Services**

Current Technology in Cell Detection

- **Capabilities**
 - Reliably counts cells (4-25 µm)
 - Provides cell size distribution
- **Limitations**
 - High cost ($3000-$20,000)
 - Single-purpose device
 - Requires trained technicians
 - Often requires fully prepared samples

What is Impedance?

- Simple Circuit
 - w/applied voltage
 - Ideal circuit analysis can only measure real resistance

- Complex Circuit
 - Cellular Model
 - Actual circuits incorporate the real resistance and non-real resistance contributions from inductors and capacitors

Impedance Cytometry

- Different frequencies will probe different components of a cell, allowing characterization of the cell membrane and cytoplasm.
- Detecting certain cell populations can be accomplished by comparing high frequency and low frequency impedance signals.

Test System

Impedance Chip

- Left: Early development impedance sensor
- Bottom Left: Magnification of the bottom side of an ink-jet print nozzle implanted with an impedance sensor. Latex beads in a phosphate buffer solution will migrate toward the air interface at the center of the nozzle.
- Bottom Right: The impedance sensor applies a voltage across the electrodes which creates an electric field within the channel. Beads cross the electrodes and disturb the electric field, which causes a spike in impedance.

Signal Processing and Analysis

- **Input**
 - Noisy raw data with changing baseline
- **MATLAB**
 - Creates a moving average fit
 - Finds minima points and creates a baseline function
 - Normalizes data by subtracting baseline function from moving average
 - Correlates peaks to physical properties such as size, velocity, and composition
- **Output**
 - Quantifiable data
 - Particle counting possible with user designated threshold

Design Recommendations and Future Work

- Propose improved circuit design with optimal voltage and frequency settings
- Implement a network of sensing channels to sort particles on-chip
- Replace the current triangular geometry of the sensing channel with a symmetrical sensing volume that utilizes two identical electrodes
- Develop a predictive mathematical model
- Update the mobile application as the functionality of the sensor increases

Acknowledgments

Dr. Manish Levien (OSU), Dr. Jeremy Sells (HP)

References