Investigating Stability of IGZO in Various Solutions
Kenley Borgerson and Kayla Jones
Dr. Greg Herman
School of Chemical, Biological, Environmental Engineering
Mentors: Joe Bergevin and Stebby Varghese John

Objective
To determine the material compatibility of IGZO for use in biometric sensing devices that will encounter bodily fluids of various pH and chemical composition.

Background
- Type 1 diabetes is a common chronic condition among Americans
- Utilizing recent developments in glucose sensors is promising for non-invasive monitoring of glucose levels
- Indium gallium zinc oxide (IGZO) can be used as a gate layer in electrical devices and displays
- IGZO field-effect transistors (FETs) are compatible with flexible transparent underlying layers (ex: contact lenses)
- The reaction between glucose and enzymes causes a current charge proportional to glucose concentrations which can be quantified by IGZO-FETs

Procedure
- Utilized AFM (atomic force microscope) to analyze surface (Rq) of existing thin film samples
- Created solutions to mimic tear fluid and test for short term and long term wear:
 - \(\text{H}_2\text{O} \) (Water) + \(\text{C}_2\text{O}_4\text{H}_2 \) (Oxalic Acid)
 - Lens solution (Kroger Brand) + \(\text{C}_2\text{O}_4\text{H}_2 \)
 - Lens solution
- Samples entered solutions which were heated to body temperature (37° C)
- Short term samples were removed after 17 hours
- Long term samples removed after 48 hours
- \(n \)-HPA (functionalized) samples removed after 24 hours
- Control samples for functionalized and non-functionalized were created for comparison
- Analyzed results with AFM

Conclusion
- \(\text{C}_2\text{O}_4\text{H}_2 \) + Lens solution showed the largest Rq (surface roughness)
- \(\text{C}_2\text{O}_4\text{H}_2 + \text{H}_2\text{O} \) solution exhibited lower Rq
- Lens solution had the least aggressive result
- \(n \)-HPA samples showed similar Rq values to the IGZO samples suggesting that passivation either did not occur or was ineffective