Carbon dioxide is widely produced in industrial waste streams. Routing these streams through CO₂ conversion reactors may be much cheaper than traditional carbon sequestration methods. Corona discharge in micro reactors offers a low-energy CO₂ utilization method.

Advantages of Corona Discharge

Corona discharge is a region of ionized gas that forms around a conductor tip at high voltage. Corona discharge can produce a plasma of CO₂ at ambient temperature and pressure. These ions may recombine in the presence of water to form useful products like methane.

Mechanism of Reactions

- **Ionization**

 $$e + CO_2 \rightarrow CO + O + e$$
 $$e + H_2O \rightarrow H + OH + e$$

- Ions Recombine to Form Products

 $$H + CO \rightarrow CH + O$$
 $$H_2 + CH \rightarrow CH_2 + H$$
 $$H_2 + CH_2 \rightarrow CH_4$$

Results

Corona discharge was successfully produced on all three needle points using tungsten needles with a tungsten plate and 1-3 kV applied voltage. The current vs. voltage curve indicates stable corona regime. Electrochemical needle etching is not recommended for larger needles due to high manufacturing time and lack of uniformity.

Future Work

- Fix or replace Gas Chromatograph to record and analyze products from the reactor.
- Determine conversion from Gas Chromatograph results.
- Determine power efficiency of the reactor.

Recommendations

- A detailed parameter space exploration should be done for corona generation in CO₂. Parameters include gap distance, needle sharpness, voltage, distance between needles, and number of needles.
- Model reactor flow to determine bypass area.

Acknowledgements

Yu Miao for project mentorship
Dr. Alex Yokochi for conceptual guidance
Dr. Goran Jovanovic for project sponsorship
Dr. Jair Lizarzo for instrumentation support
Dr. Philip Harding for project opportunity